No Trade-Off between Learning Speed and Associative Flexibility in Bumblebees: A Reversal Learning Test with Multiple Colonies

نویسندگان

  • Nigel E. Raine
  • Lars Chittka
چکیده

Potential trade-offs between learning speed and memory-related performance could be important factors in the evolution of learning. Here, we test whether rapid learning interferes with the acquisition of new information using a reversal learning paradigm. Bumblebees (Bombus terrestris) were trained to associate yellow with a floral reward. Subsequently the association between colour and reward was reversed, meaning bees then had to learn to visit blue flowers. We demonstrate that individuals that were fast to learn yellow as a predictor of reward were also quick to reverse this association. Furthermore, overnight memory retention tests suggest that faster learning individuals are also better at retaining previously learned information. There is also an effect of relatedness: colonies whose workers were fast to learn the association between yellow and reward also reversed this association rapidly. These results are inconsistent with a trade-off between learning speed and the reversal of a previously made association. On the contrary, they suggest that differences in learning performance and cognitive (behavioural) flexibility could reflect more general differences in colony learning ability. Hence, this study provides additional evidence to support the idea that rapid learning and behavioural flexibility have adaptive value.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Social Learning in Bumblebees (Bombus impatiens): Worker Bumblebees Learn to Manipulate and Forage at Artificial Flowers by Observation and Communication within the Colony

Social learning occurs when one individual learns from another, mainly conspecific, often by observation, imitation, or communication.Using artificial flowers, we studied social learning by allowing test bumblebees to (a) see dead bumblebees arranged in foraging positions or (b) watch live bumblebees actually foraging or (c) communicate with nestmates within their colony without having seen for...

متن کامل

The correlation of learning speed and natural foraging success in bumble-bees.

Despite the widespread assumption that the learning abilities of animals are adapted to the particular environments in which they operate, the quantitative effects of learning performance on fitness remain virtually unknown. Here, we evaluate the learning performance of bumble-bees (Bombus terrestris) from multiple colonies in an ecologically relevant associative learning task under laboratory ...

متن کامل

Associative learning and memory duration of Trichogramma brassicae

Learning ability and memory duration are two inseparable factors which can increase theefficiency of a living organism during its lifetime. Trichgramma brassice Bezdenko (Hym.:Trichogrammatidae) is a biological control agent widely used against different pest species.This research was conducted to study the olfactory associative learning ability and memoryduration of T. brassicae under laborato...

متن کامل

No evidence for an evolutionary trade-off between learning and immunity in a social insect.

The immune response affects learning and memory in insects. Given this and the known fitness costs of both the immune system and learning, does an evolutionary trade-off exist between these two systems? We tested this by measuring the learning ability of 12 bumble-bee (Bombus terrestris) colonies in a free-flying paradigm. We then tested their immune response using the zone of inhibition assay....

متن کامل

Basolateral Amygdala Lesions Abolish Orbitofrontal-Dependent Reversal Impairments

Damage to orbitofrontal cortex (OFC) has long been associated with deficits in reversal learning. OFC damage also causes inflexible associative encoding in basolateral amygdala (ABL) during reversal learning. Here we provide a critical test of the hypothesis that the reversal deficit in OFC-lesioned rats is caused by this inflexible encoding in ABL. Rats with bilateral neurotoxic lesions of OFC...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012